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Abstract
A mechanism of attraction between like-charged macroions due to charge
fluctuation has been revisited for macroions of different geometries. For
higher charge asymmetry, macroion geometry plays an important role in charge
fluctuation, while for comparatively lower charge asymmetry the fluctuation is
almost independent of the geometry. At very low temperatures and in a high
Coulomb coupling regime, stable ionized states due to auto-ionization are able
to exist, which leads to long range Coulomb attraction. Overcharging of a
single macroion and its counterion distribution minimizing the total energy
has been studied briefly to explain the attraction properties between two like-
charged macroions. The investigations have been carried out using a technique
based on total energy minimization which has been verified successfully for
some special cases with molecular dynamics simulation results previously
published. A theoretical model, derived by modifying the Scatchard approach,
is proposed to explain the overcharging curves obtained from the simulation.
It has been found that the model is equally efficient for both spherical and non-
spherical macroion geometries. Wigner crystal theory has also been employed
for spherical cases, and excellent agreement has been found between the two
theoretical approaches.

1. Introduction

The attraction between two like-charged macroions, one of the most interesting counter-
intuitive phenomena, can originate from a number of mechanisms [1, 2]. Auto-ionization is
one of them, which has recently been studied extensively [3–5] for spherical macroions. Auto-
ionization originates from mutual counterion transfer between a pair of macroions, leading
to one macroion being overcharged and the other undercharged. Due to overcharging, the
effective charge of the macroion becomes opposite to its bare charge and also to the effective
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charge of the other (undercharged)macroion. Overcharging or overscreening [3–7] stems from
ionic correlation [7–11] which cannot be explained using mean field theories [12–15] because
such theories ignore ionic correlation.

To understand how auto-ionization leads to strong long range attraction between charged
macroions, one needs to focus on the overcharging phenomenon of a single macroion.
Overcharging a spherical macroion at T = 0 resembles the classic Thomson problem of
finding the ground state of charges confined to a sphere. This has recently attracted huge
attention because of its possible application to colloidal and polyelectrolyte solutions and
particularly to biological systems containing multivalent counterions. The Thomson problem
is a 100 year old puzzle originating from the classical work of Thomson [16]. A large number
of papers have already been published [17–39] (listed chronologically) attacking it in various
analytical approaches. Since the principal goal of this paper is to focus on the influence of the
macroion geometry on the attraction mechanism between a pair of macroions, the discussion
of the Thomson problem is not considered here, and the relevant overcharging phenomenon
will be expressed in terms of the above-stated ionic correlations only.

When a macroion (initially neutralized by counterions) is being overcharged, ionic
correlation builds up between the counterions on the surface of the macroion, which causes
a gradual decrease in total electrostatic energy with adsorption of counterions up to a
certain number. The maximum number of counterions adsorbed by the macroion (‘maximal
acceptance’), which corresponds to the lowest electrostatic energy of the macroion complex
(macroion and counterions condensed on macroion surface) depends on the macroion bare
charge. This number has been seen to increase with the increase of the macroion bare charge.
Similarly, the strength of attraction between a pair of undercharged and overcharged macroions
increases with the increase in difference of their bare charges, since the macroion bare charge
asymmetry is directly related to the difference in correlation energies of the macroions [3].
In this study, it is shown that if the macroion charge asymmetry is high enough, a ‘stable’
ionized ground state is possible to exist, and the energy variation due to ionization is nearly
independent of the macroion geometry and size for lower macroion charge asymmetry, while
for higher charge asymmetry, it does depend on both the macroion geometry and size.

In the following, a technique based on electrostatic energy minimization will be elaborated
and later employed. Next, the properties of overcharging of a single macroion with different
geometries and sizes will be considered. In addition, the attraction phenomena due to auto-
ionization between a pair of macroions with different geometries and sizes will be discussed
in detail. For both a single macroion and a pair of macroions, two analytical models will be
discussed and verified by the simulation results.

2. The energy minimization technique

In this paper, an intuitively simple technique based on the minimization of electrostatic energy
has been employed to study the phenomenon of charge inversion. Usually energy minimization
(EM) is an inherent phenomenon in a bound system. In any force field, whenever a bound
system forms, it tries to minimize its configurational energy for stability, which is the basic idea
behind this technique. Since the potential energy is a function only of distance, the members
of the system arrange themselves to achieve a minimum energy configuration generally by
maximizing their mutual distances. The electrostatic interaction energy between a spherical
macroion of charge +Q and radius R and a given number of point-like counterions of charge
−qi each is proportional to − Q

∑
i qi

R +
∑

i< j
qi q j

ri j
, where ri j is the direct distance between any

two counterions i and j . Here ri j is the only variable parameter depending on which energy is
determined. In this case the bigger the ri j the smaller the energy. Thus, to minimize the energy,
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ri j needs to be maximized. Note that in both Monte Carlo (MC) and molecular dynamics (MD)
simulations, some type of energy minimization, subject to some given criteria, is effected.

The above approach has been extended to two other non-spherical geometries, an oblate
spheroid and a spherocylinder, to investigate the pattern of the charge inversion and ion
distribution in non-spherical geometries. It will be further discussed and shown that the
degree of charge inversion is influenced by the macroion geometries. One of the reasons
behind the choice of these geometries is that the oblate spheroid and spherocylinder can be
imagined to be deformed shapes of a sphere as though a sphere were pressed (oblate spheroid)
or pulled (spherocylinder) from two opposite sides. By deforming the spherical macroion
gradually, one can clearly see the change in electrostatic energy of interaction between the
macroion and surrounding counterions on its surface. Another reason is that many biological
organisms and chemical macromolecules have shapes very similar to an oblate spheroid
(namely globular proteins) and spherocylinder (namely tobacco mosaic virus, double helix
DNA, F-actin, microtubules [44]). Thus, the aim of this study is three fold:

(i) to propose a simple technique, and
(ii) to investigate the effect of macroion geometry and/or macroion charge distribution on the

overall charge inversion and counterion distribution, and
(iii) to examine the influence of macroion geometry and charge asymmetry on the inter-

macroion attraction due to auto-ionization.

Since the ground state energy configuration (T = 0) is considered, the provisions on ion
move acceptance of the Metropolis algorithm of a traditional MC simulation cannot be applied
completely in this study. Moreover, only one final configuration is required for this system:
that which has the lowest possible total electrostatic potential energy. In this technique, that
final configuration has been achieved via following three steps. First, the neutral state is
considered, where the total counterion charge is equal to the bare charge of the macroion. The

average distance between the counterions is then estimated as d ∼= 2
√

4π R2

πNc
, where 4πR2 is the

surface area of the macroion and Nc is the number of counterions. Since the surface areas of
non-spherical macroions are the same as those of the spherical ones, this estimation of average
inter-ionic distance is also valid for spherocylinders and oblate spheroids. The counterion
positions are generated randomly on the surface of the macroion, keeping an initial inter-ionic
distance of at least 40% of the estimated d . Note that, if 0.4d is less than the diameter of a
counterion, one needs to consider a bigger initial inter-ionic distance to avoid the possibility
of overlapping. If the position of any ion is less than 0.4d from any of its neighbour, the
coordinates of that ion are regenerated repeatedly (up to a certain maximum number, typically
not more than 10 000 times) until it maintains the required distance. The choice of initial
inter-ionic distance also depends on τ . In the case of non-spherical geometries, for example
a spherocylinder, the counterions may not occupy the whole surface area of the macroion.
To minimize the electrostatic energy, most of the counterions generally accumulate on the
cylindrical area of the spherocylinder. This is why it is necessary to consider an initial distance
much lower than the average inter-ionic distance, especially in case of non-spherical geometry.
When all the counterions are positioned on the macroion surface the total electrostatic energy
(Nc counterions and macroion) is measured. The inter-ionic distance is gradually increased
from its initial value (in this study, 500 steps have been considered) and after each increase
the above procedure is followed a number of times (10 000 in this study) to achieve a lower
energy configuration. The process can continue until the inter-ionic distance reaches at least
0.95d . In this way the whole process generates a huge number of counterion configurations
(500 × 10 000). Among all these configurations, only the lowest energy configuration is
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accepted. The ion coordinates of this configuration are then transferred to the second steps
where any of these counterions can move up to a maximum distance d/2 about its position for
further energy minimization. In this step an ion is chosen at random and is moved randomly
on the macroion surface. After each movement of any ion, the total electrostatic energy of
the whole system is calculated. The move is accepted only if it causes a decrease in total
energy. Note that, in this technique, the total energy is only allowed to decrease (contrary
to the usual MC concept) and finally reaches the lowest energy configuration. In all cases,
each ion attempts approximately one million moves (iteration) before the final configuration
of the system is reached. In the third step (overcharging), starting from the neutral state, one
counterion at a time is added to the system, and following the above two steps the lowest
possible energy configuration is found for each addition.

The displacement parameter (DP) or step length is defined as the extent of maximum
movement of an ion which adjusts itself (in a random manner) until an ion move is accepted.
Varying the DP is the most essential part of this technique. The adjustment of the DP has been
done in the following manner. At the very beginning of the second step of the simulation, an
initial DP has been assigned which is approximately equal to the average distance between
two adjacent ions (d). This value of the DP does not change until the acceptance continues,
since a particular value of the DP can cause a decrease in energy by means of acceptance of
ion movements towards a required direction and extent. The initial DP brings the system to
its first local minimum energy state and no further decrease in energy is observed. When the
decrease in energy stops (due to unaccepted ion moves) the DP is supposed to start changing
its value randomly after each unaccepted ion move. But before changing its value (randomly),
the last value of the DP is held fixed for a given number (generally 100 or less) of iterations (an
iteration is defined as an attempt to move an ion, no matter whether it is accepted or not) for
more acceptance. If any acceptance occurs within these 100 iterations, the DP does not change
for the next 100 iterations. Had this trend continued, the DP would not change at all. If no
acceptance occurs within these 100 iterations, the DP starts adjusting itself randomly until an
ion move is accepted. Finally the DP finds a suitable new value (generally smaller than before)
which initiates acceptance of each of the subsequent moves (or with an interval of a maximum
100 unaccepted moves) for a number of iterations, and the energy is seen to decrease until
the system reaches the next state of local minimum energy (see figure 1). The above process
is repeated a number of times until the system reaches very close to the true ground state. It
has been seen that this short discontinuity in fluctuation of the DP is unavoidable and has a
profound impact on quick energy minimization. Such fluctuations of the DP actually help to
break the spatial counterion arrangements which cause the local minima, and help to reach a
new minimum. Note that random adjustment of the DP is not required for the first step.

It is customary in traditional MC simulations to vary the displacement of a particle
randomly within a slowly varying or fixed DP to achieve a predetermined acceptance
percentage. Early statements clarify that the DP remains fixed in this technique when the
system energy gradually decreases between two local minima (which implies nearly continuous
acceptance). But when the system reaches a local minimum, the DP itself fluctuates randomly.
Thus the ion fluctuations are intensified by double random effects. It has been observed that
at a specific local minimum, the length of the DP can become momentarily bigger than the
length it had just before reaching the minimum. This can cause strides of the ions over the
macroion surface, which is very similar to a suddenly increased temperature state.

Normally, during the simulation run, the DP gradually decreases (except for some sudden
increases near local minima) while the system passes through a series of such states of
increasingly lower energies. It is seen (after a sufficient number of iterations) that even after
the displacement parameter is adjusted to a value less than 10−6 Å, the energy continues
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Figure 1. The change of displacement parameter (DP) and consequently the decrease in total
energy of the macroion complex as the simulation proceeds. Each point (filled circle) indicates a
state of local minimum energy and represents a change in DP which is automatically selected by
the program depending on the acceptance of an ion movement.

decreasing, but the energy changes are infinitesimally small. In those cases it is assumed that
the system is very close to the true ground state. It is extremely challenging to reach the true
ground state since the nearly degenerate metastable states grow exponentially [32] (also see
figure 1). Indeed, for the purposes of the present study, knowledge of the exact ground state
energy is really not necessary since one wants only to be sufficiently close to the ground state
energy.

3. Single macroion overcharging

3.1. Simulation model

The system considered in this study is comprised of an isolated macroion with bare charge
Q = −Zm|e| surrounded by a number Nc of small counterions with charge q = Zc|e|, so that
Q = −Nc Zc|e| is the neutral state. Following Messina et al [3] the value Zc = 2 is chosen for
all the calculations. All these counterions are always kept at a constant counterion–macroion
distance of closest approach (hard core). The non-spherical macroions considered here are
oblate spheroids and spherocylinders, as stated earlier. The spherocylinder is a cylinder of
length L and radius r sandwiched between two hemispherical end caps of the same radius r
(figure 2). Thus the length of the cylinder1 is L = rτ . In the oblate spheroid, the centres of
curvature A and B of the two hemispherical sections a and b are at a distance L (figure 3) apart.
Obviously, if τ = 0, the two non-spherical geometries reduce to sphere. For all the geometries
the surfaces have been kept same as that of a sphere of radius R = 28.56 Å since in Wigner

1 The ‘shape factor’ τ is an important parameter in this study, as it governs the geometry (shape) and size of the
macroions. With the change of size (length and width), the surface of an oblate spheroid or a spherocylinder is kept
the same as that of a sphere of fixed radius R to maintain the same surface charge density. In case of a spherocylinder,
when the length L of the cylinder is changed, the radius of the hemispherical end caps rm is also changed to keep the
same surface as shown in equation (A.2). The shape factor is defined as τ = L/r; in terms of τ , the aspect ratio of
the spherocylinder = L/(2r) = τ/2.
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Figure 2. A spherocylinder. A and B are the centres of the two end caps which are distance L
apart (L is also the length of the cylinder).

Figure 3. An oblate spheroid. A and B are the centres of curvature of the two equal sections a and
b of a sphere of radius rm. The centres A and B are at distance L apart. The point O is considered
as the centre of the oblate spheroid.

crystal (WC) theory, the energy gains scale with the surface counterion concentration and thus
this allows different geometries that are comparable in terms of WC theory.

The computer routine had been made in such a way that it could calculate minimum
energy configurations for any of the three models used in this study by choosing only one of
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the three following values of the ‘shape factor’: τ = 0 (sphere), τ < 0 (oblate spheroid),
τ > 0 (spherocylinder).

The internal charge distribution of a non-spherical macroion plays important roles in
counterion distribution and energy minimization. Charge distribution will be discussed in
section 3. As a plausible assumption, a single central point charge at O (figure 3) for an oblate
spheroid and a line charge AB for a spherocylinder (figure 2) have been investigated in this
study. Under these assumptions the Coulombic potential energies for the three geometries can
be written straightforwardly.

3.1.1. Spherocylinder (τ > 0).

E = |e|2
4πε0εr

[
CλZc

∑
i

ln

[
1 + sin(ψ2i )

1 − sin(ψ1i )

cos(ψ1i )

cos(ψ2i )

]
+

∑
i< j

Z 2
c

ri j

]
(1)

where
Cλ = Zm/L

ψ1i = tan−1

[
(L/2 − zi )

rm cos θi

]

ψ2i = tan−1

[
(L/2 + zi )

rm cos θi

] (2)

ri j is the mutual distance between any two ions i and j , and zi is the coordinate of any ion i
and rm is the adjusted macroion radius (see the appendix).

If, −L/2 � zi � L/2, θi = 0, otherwise

θi =
{

sin−1[(zi − L/2)/rm], zi > L/2
sin−1[(zi + L/2)/rm], zi < −L/2.

(3)

The first term of equation (1) accounts for the Coulombic interaction between the line charge
of the spherocylinder and counterions, while the second term is due to mutual interactions
between counterions. In the case of a spherocylinder, for a counterion position anywhere on
the cylindrical surface (−L/2 � zi � L/2), θi = 0 and equation (3) does not apply. Then
ψ1i = tan−1[(L/2− zi )/rm] andψ1i = tan−1[(L/2+ zi)/rm], and the first term of equation (1)
becomes

|e|2
4πε0εr

CλZc

∫ ψ2

−ψ1

sec ϕ dϕ (4)

due to the line charge.
If the counterion position is at |Zi | � L/2, then ψ2i = −θi and ψ2i = tan−1[L/2 + zi ]

and the first term of equation (1) reduces again to equation (4). For zi = (L/2 + R), the first
term is replaced by −|e|2

4πε0εr
CλZC ln[ rm

rm+L ].

3.1.2. Oblate spheroid (τ < 0).

E = |e|2
4πε0εr

[∑
i

Cs Zc

roi
+

∑
i< j

Z 2
c

ri j

]
(5)

where Cs = Zm is the charge at the centre of the oblate spheroid (i.e. at point O in figure 2)
and roi is the distance of a counterion from the centre O. The first term of equation (5) is for
the interaction between the charge at the centre O of the oblate spheroid and counterions, and
the second term is again due to the mutual interactions between counterions. In this case,
zi = zi − L/2 for zi � 0 and zi = zi + L/2 for zi ≺ 0 have been considered to account for the
geometry.



2914 A K Mukherjee

3.1.3. Sphere (τ = 0).

E = |e|2
4πε0εr

[
Cs Nc Zc

R
+

∑
i≺ j

Z 2
c

ri j

]
(6)

where the first term on the right-hand side is due to the interaction of the macroion charge with
the counterions, while the second term accounts for the interaction between the counterions.

It is important to note that the dielectric constant of the macroion is always assumed to
be the same as that of counterions. This is a rather common assumption made in the literature
to avoid the problem related with electrostatic image due to the discontinuity of the dielectric
constant at the interface. However, the effects of a different dielectric constant have been
discussed in recent papers by Messina [42].

3.2. Analytical models

3.2.1. WC theory (for spherical macroions). At absolute zero all counterions are physically
attached to the macroion surface and thus WC theory can be employed [38, 44] to explain the
mechanism. In terms of the WC parameter α [3], the energy gain due to the first overcharging
(excess) counterion is

	E1 = αλZ 2
c√

A
[(Nc + 1)3/2 − N3/2

c ] +
λZ 2

c

2R
(7)

and similarly, for n excess counterions

	En = αλZ 2
c√

A
[(Nc + n)3/2 − N3/2

c ] + n2 λZ 2
c

2R
. (8)

Here, Nc is the total number of counterions necessary to neutralize the macroion, n is the
number of overcharging (excess) counterions, λ = |e|2

4πε0εrkB T , 	E1 = E0 − E1 with E0 being

the neutral state energy, and E1 is the one excess-ion state energy. Also A = 4πa2, the
macroion surface area, εr and ε0 are the relative and vacuum permittivity respectively, kB is
the Boltzmann constant, Zc is the counterion valence, and |e| is the charge of a proton. From
equation (7) α is given by

α = −( λZ2
c

2R −	E1)
√

A

λZ 2
c [(Nc + 1)3/2 − N3/2

c ]
. (9)

Eliminating α from equation (8), one gets

	En = −
(
λZ 2

c

2R
−	E1

)
[(Nc + n)3/2 − N3/2

c ]

[(Nc + 1)3/2 − N3/2
c ]

+ n2 λZ 2
c

2R
(10)

where	En = E0 − En . From equation (10), one can calculate En if the first overcharge	E1

is known. The relation [3] for the maximally obtainable number of overcharging counterions
is

nmax = 9α2

32π
+

3α

4
√
π

√
Nc

[
1 +

9α2

64πNc

]1/2

. (11)

3.2.2. A proposed model modifying the Scatchard approach (for all geometries). A theoretical
model to fit the simulation data for all geometries can be proposed by modifying [40] the
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Scatchard [41] approach, which employs average interaction. For the macroion complex (with
N counterions) of any geometry, the average interaction can be expressed as

〈EN 〉 = Z 2
c 〈C〉

[
N(N − 1)

2

]
− Zm Zc〈M〉N (12)

〈EN 〉 = Z 2
c 〈C〉

[
(Nc + n)(Nc + n − 1)

2

]
− Zm Zc〈M〉(Nc + n) (13)

where N = Nc + n, Nc = Zm/Zc and n is the overcharging counterion. 〈C〉 and
〈M〉 represent average counterion–counterion and counterion–macroion energy functions,
respectively. N(N − 1)/2 is the total number of mutual interactions among N counterions on
the surface of the macroion. Equation (13) can be expressed in quadratic form in terms of n as

〈EN 〉 = S0 + S1n + S2n2 (14)

where

S0 = Z 2
c 〈C〉

[
Nc(Nc − 1)

2

]
− Zm Zc〈M〉Nc (15)

S1 = Z 2
c

2
[2Nc(〈C〉 − 〈M〉) − 〈C〉] (16)

S2 = Z 2
c

2
〈C〉. (17)

The energy difference between a neutral complex and an overcharged one is

	En = 〈EN 〉 − 〈ENc〉
= S1n + S2n2. (18)

The ‘maximal acceptance’ nmax can be found by differentiating equation (18) with respect to
n:

∂(	En)

∂n
= S1 + 2S2n +

(
∂S1

∂n

)
n +

(
∂S2

∂n

)
n2. (19)

But
∂Si

∂n
=

(
∂Si

∂〈C〉
) (

∂〈C〉
∂N

) (
∂〈N〉
∂n

)
.

Since N = Nc + n,

∂Si

∂n
=

(
∂Si

∂〈C〉
) (

∂〈C〉
∂N

)
.

Using these identities, equation (19) reduces to

∂(	En)

∂n
= S1 + 2S2n + (2Nc − 1)

Z 2
c n

2

(
∂〈C〉
∂N

)
. (20)

For a large number of counterions, one can assume that ∂〈C〉
∂n = 0, since the inclusion of one

ion does not make a significant change in the total energy if the counterion number is large
enough. This approximation is within the framework of the Scatchard approach. With this
approximation, the localization of the minimum in the	En profile is

nmax = − S1

2S2

= Nc

[ 〈M〉
〈C〉 − 1

]
+

1

2
. (21)
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Alternatively,
〈M〉
〈C〉 = nmax − 1/2

Nc
+ 1. (22)

Using the simulation data, it has been found that 〈M〉/〈C〉 is approximately constant for a
fixed macroion charge, and is almost independent of the macroion geometry. But due to the
above-stated approximation the exact value of 〈M〉/〈C〉 cannot be derived in the above way.
To avoid this problem and to get a good fit, a trial and error technique has been employed in
the following way.

Like [3], using the first overcharge	E1 from the simulation, 〈C〉 can be calculated from
equation (18) as

〈C〉 = 	E1

Z 2
c

[
1 − 〈M〉

〈C〉
]
Nc
. (23)

Applying (23) in (18), one can get an expression for the energy as

	En = 	E1n

2
[ 〈M〉

〈C〉 − 1
]
Nc

{
2

[ 〈M〉
〈C〉 − 1

]
Nc + 1 − n

}

= 	E1n

X Nc
{X Nc + 1 − n} (24)

assuming

X ∼= 2

[ 〈M〉
〈C〉 − 1

]
(25)

as an arbitrary fit parameter.
Using the best values of X obtained by trial and error to fit the simulation data with

equation (24), one can calculate 〈M〉/〈C〉 from equation (25) and can get more accurate nmax

by applying it in equation (21).

4. Double macroion auto-ionization

In this case, two macroions 1 and 2 of same size (τ1 = τ2) and of different bare charges
Z1 and Z2 (Z1 � Z2) surrounded by their neutralizing counterions (Zc = 2) have been
considered. The centre–centre separation r between them and the bare macroion charges have
been kept fixed. At the beginning of the auto-ionization process, employing the previously
stated minimization technique, the number of neutralizing counterions N1 = Z1/Zc and
N2 = Z2/Zc are rearranged on the surface of the macroions 1 and 2 respectively to achieve a
global minimum energy. Next, a counterion has been chosen randomly from 2 and transferred
to 1 and then the energy is minimized again to get the first ionization energy. Practically, this
is the same procedure as was followed for the neutral state but the numbers of counterions
are now N1 + 1 and N2 − 1 for macroions 1 and 2, respectively. The energies of subsequent
ionized states have been calculated by repeating the above procedure.

4.1. Simulation model

4.1.1. A pair of spherocylinders.

E = |e|2
4πε0εr

[
Cλ1 Zc

∑
i

ln

[
1 + sin(ψ2i )

1 − sin(ψ1i )

cos(ψ1i )

cos(ψ2i )

]

+ Cλ2 Zc

∑
i

ln

[
1 + sin(ψ12i )

1 − sin(ψ11i )

cos(ψ11i )

cos(ψ12i )

]
+

∑
i< j

Z 2
c

ri j

]
(26)
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where

Cλ1 = Z1/L, Cλ2 = Z2/L, ψ1i = tan−1

[
(L/2 − zi )

rm

]

and ψ2i = tan−1

[
(L/2 + zi )

rm

]
.

If the counterion (figure 7) is at point Q (Zi � L/2)

ψ11i = sin−1

[
(L/2 − zi )

QT

]
and ψ12i = sin−1

[
(L/2 + zi)

QT

]

or, if the counterion is at point P (Zi � L/2)

ψ11i = sin−1

[
(L/2 − zi )

P A

]
and ψ12i = sin−1

[
(L/2 + zi)

P B

]
.

ri j is the mutual distance between any two ions i and j , irrespective of macroion affiliation,
and zi is the coordinate of any ion i . The distances PA, PB and QT can be calculated from
the ion coordinates. Although in figure 7 points P and Q are on macroion 1, they could be on
either macroion without any change in above-stated principle.

4.1.2. A pair of oblate spheroids.

E = |e|2
4πε0εr

[∑
i

Cs1 Zc

roi
+

∑
i

Cs2 Zc

roi
+

∑
i< j

Z 2
c

ri j

]
(27)

whereCs1 = Z1 and Cs2 = Z2.

4.1.3. A pair of spheres.

E = |e|2
4πε0εr

[
Cs1 Nc Zc

R
+

Cs2 Nc Zc

R
+

∑
i≺ j

Z 2
c

ri j

]
. (28)

All other notations and symbols are the same as those of the single macroion case.

4.2. Analytical models

4.2.1. WC theory (for spherical macroions). Since the total electrostatic potential energy is
comprised of overcharging and undercharging of macroions, one can write the energy gain due
to ionization as [3]

	E ion
n = 	Eovr

n +	Eund
n (29)

where n is the degree of ionization. The energy gain due to overcharging and undercharging
can be written analogously to equation (8) as

	Eovr
n = αλZ 2

c√
A

[
(N1 + n)3/2 − N3/2

1

]
+ n2 λZ 2

c

2R
(30)

	Eund
n = αλZ 2

c√
A

[
(N2 − n)3/2 − N3/2

2

]
+ n2 λZ 2

c

2R
. (31)
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4.2.2. Modified Scatchard model. As before, the average energies of macroions 1 and 2 can
be expressed as

〈E1〉 = Z 2
c

[
N1(N1 − 1)

2

]
C1 − Z1 Zc〈M1〉 − Z2 Zc〈M〉 (32)

〈E2〉 = Z 2
c

[
N2(N2 − 1)

2

]
C2 − Z2 Zc〈M2〉 − Z1 Zc〈M〉 (33)

where, like the single macroion case, C1, C2, M1, M2 are the average energy functions
between counterion–counterion and counterion–macroion for macroions 1 and 2 and M is
the counterion–macroion average energy function between macroion 2 and a counterion on
macroion1 (or macroion 1 and a counterion on macroion 2). Since, in this case, the sizes of both
macroions are equal, M1 = M2. For n degrees of ionization N1 = N1 + n and N2 = N2 − n,
and the total average energy of the pair is

〈En〉 = 〈E1〉 + 〈E2〉. (34)

The energy gain due to n degrees of ionization is

〈	E ion
n 〉 = 〈En〉 − 〈E0〉 (35)

where 〈E0〉 is the energy of the neutral state (n = 0). Applying equations (32) and (33),
equation (35) reduces to

〈	E ion
n 〉 = Z 2

c

[
n2 C1 + C2

2
+ n

{
C2

2
− C1

2
+ f (C1,M1,M)

}]
. (36)

Using the simulation value of first ionization in equation (26), the last term of equation (26)
can be calculated as

f (C1,M1,M) = 〈	E1〉
Z 2

c
− C2. (37)

From equations (36) and (37)

〈	E ion
n 〉 = Z 2

c

[
n2 C1 + C2

2
+ n

{ 〈	E1〉
Z 2

c

− C1 + C2

2

}]
. (38)

Considering X = C1+C2
2 as a fit parameter, one can rewrite equation (38) as

〈	E ion
n 〉 = Z 2

c

[
n2 X + n

{ 〈	E1〉
Z 2

c
− X

}]
. (39)

5. Results and discussion

To conform with the previous work of Messina et al [3] the same parameters have been
considered for all cases, as given in table 1 (see also table 1 of [3]) to facilitate the comparison
of the present results with those of [3]. The macroion and counterion sizes have been
chosen such as to minimize the excluded volume effect. Electrostatic interaction energies
have been calculated in dimensionless forms by normalizing to the standard thermal energy
kBT = 4.1124 × 10−21 J/particle.

5.1. Single macroion case

The ground state configuration energy of a spherical macroion versus the number of
overcharging counterions has been plotted in figure 4. For lower macroion charge [Zm = 50],
the energy variation is almost the same as those given in figure 5 of [3]. With the increase
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Figure 4. The ground state electrostatic energy of a charged spherical macroion as a function of
overcharging counterions. Open circles are from [3] and [43], filled circles are from this work
and the dashed and solid lines are from equations (10) and (24), respectively. The neutral state
energies of a spherical macroion of corresponding charges have been taken as the origin of the plot.
Curves a, b and c are for Zm = 50, 90 and 180, respectively.

Table 1. Physical parameters and symbols used in the present calculations.

Room temperature T = 298 K
Relative permittivity εr = 16.0
Valence of counterion Zc = 2
Valence of macroion ion Zm = 50, 90, 180
Lennard-Jones length unit σ = 3.57 Å
Counterion diameter = σ

Radius of a spherical macroion = R
Radius of a non spherical macroion = rm

Macroion (spherical)–counterion distance of closest approach = 8σ ∼= 28.56 Å

of macroion charge the results clearly show a gradual deviation from the corresponding result
in Messina et al [3]. This should not be too surprising since Messina et al used different
colloid–counterion potentials. For instance, in their work the excluded volume interactions
were considered via the repulsive part of the Lennard-Jones (LJ) potential where counterions
could penetrate up to 0.5σ inside the soft macroion. Both the Coulombic and excluded volume
interactions contributed to the total potential in the MD simulation. Within the framework of
the present technique, it is seen that the addition of the repulsive component of the LJ potential
cannot decrease the total interaction energy of the configurations due to the nature of the
potential. Thus, counterion penetration into the macroion is automatically rejected by this
technique as though the macroion and counterions were hard spheres. In the case of smaller
systems (namely, Zm = 50) the counterions hardly encounter each other or penetrate into
the macroion due to comparatively weaker Coulombic interaction, and thus the results of the
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Figure 5. The ground state electrostatic energy of charged (Zm = 90) macroions of different τ
(namely, sphere (τ = 0), oblate spheroid (τ ≺ 0) and spherocylinder (τ � 0)) as a function of
overcharging counterions n. The neutral state energy of each size and geometry (indicated by τ )
is the origin of the corresponding curves. For both the non-spherical geometries the lowest energy
points (energy corresponds to ‘maximal acceptance’ nmax) shift upwards with the increase of |τ |.
The solid lines are theoretical fits from equation (24). The fit parameters are given in table 4.

present study for smaller systems are very close to those from MD calculations. In larger
systems (namely, Nc = 45, 90) however, the LJ potential in the MD calculation plays an
important role in ion distribution due to shorter distances (�21/6σ) between the counterions
and to their being able to penetrate inside the macroion. Obviously, for higher numbers of
counterions, the two techniques (MD and the present) actually consider different physical
conditions, and thus it is not worthwhile to attribute superiority to either of them.

From the first overcharge, as explained earlier, α has been calculated from equation (9).
Using thisα in equation (8), a curve (dashed curves of figure 4) has been found that fits well with
all the data resulting from this technique. This comparison clearly reveals the computational
accuracy and reliability of this method. The solid curves are from equation (24). The agreement
between the two models is obviously excellent.

The line charge distribution for a spherocylinder is a very common representation for
cylindrical macroions. Under this assumption it is found that when the non-spherical macroions
are gradually overcharged, the potential energy varies very similarly to that of a spherical
macroion. In figure 5, the similarity between the potential energy curves of non-spherical
macroions and those of a spherical one is obvious, with a minimum (‘maximal acceptance’)
for all the three geometries (macroion charge Zm = 90). Studies on other non-spherical
macroion charges have shown similar results. Each curve is labelled by the corresponding
factor τ with τ = 0, τ > 0 and τ < 0 indicating sphere, spherocylinder and oblate spheroid,
respectively. The solid curves have been produced using equation (24). The fit parameters
for equation (24) are given in table 4. The excellent agreement indicates that the proposed
theoretical model (derived by modifying the Scatchard approach) is equally suitable for all
three geometries.

In both the non-spherical cases, the minima of the interaction energy shift upwards (become
more positive) with the increase of |τ |. From figures 2 and 3, it is obvious that an increase
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Figure 6. The neutral state energy of macroions with different bare charges: (A) Zm = 50,
(B) Zm = 90 and (C) Zm = 180 as a function of τ . The neutral state energy of a sphere is taken
as the origin. The dashed lines are polynomial fits to guide the eye.

Figure 7. A spherocylindrical macroion pair, where ψ1 = � gPh, ψ2 = � gPe, ψ11 = � fPA,
ψ12 = � fPB for a counterion at P on macroion 1. For any position of any counterion on any
macroion can be specified in the similar way.
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Figure 8. The total electrostatic potential energy of a pair of spherical macroions as a function of
the degree of ionization. The charge Z1 of macroion 1 is always fixed at 180 while the charge Z2 of
other one varies as shown. The neutral state energy has been considered as the origin. The centre–
centre macroion separations are (a) r/R = 4.25 (b) r/R = 3.0 and (c) r/R = 2.4. The dashed and
solid curves are from equations (29) (WC theory) and (39) (proposed model), respectively. Some
of the fit parameters of equation (39) are given in table 5.

of |τ | for an oblate spheroid means a decrease of its thickness, while for a spherocylinder an
increase of |τ | implies an increase of its length. Since in both geometries the surfaces are
kept always the same as that of a sphere of radius R (=28.56 Å), the increase of |τ | makes
them narrower, bringing the surfaces closer to the line charge for a spherocylinder and to
the central point charge for an oblate spheroid. Due to this, the interaction energy should
decrease (become more negative), but we see the opposite in figure 5. This can be explained
in the following way. In an oblate spheroid, with the increase of |τ | the counterions come
closer to one another, causing increased repulsion among them. The repulsive part of the total
interaction energy becomes more significant than the attractive one. In a spherocylinder, an
increase of the surface area (on the cylindrical region of the macroion) decreases the repulsion
among the counterions. At the same time, the line charge density also decreases, which causes
a decrease in attraction between the line charge and the counterions. Due to this competitive
decrease of attractive and repulsive interaction energies, the increase in total energy with |τ |
is much slower for a spherocylinder than that for an oblate spheroid.

With the increase of |τ |, the surface of the oblate spheroid comes closer to the point O
(figure 3) where the macroion charge is assumed to be concentrated, and this causes a very
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Figure 9. The neutral state energy of a pair of macroions separated by a centre–centre distance
r = 121.38 Å (r/R = 4.25) as a function of τ . The charge of one macroion is fixed at Z1 = 180
while that of the other varies as: (A) Zm = 30, (B) Zm = 90 and (C) Zm = 150. The dashed lines
are merely to guide the eyes.

strong attractive interaction between the counterions and macroion. By the same token, the
area where the counterions find themselves shrinks, and repulsion among them also becomes
high. In such a situation any excess counterion, due to overcharging, would further enhance
both such attraction and repulsion. Such competing effects are likely to cause a fluctuation in
total energy. This fluctuation has seen to occur at τ � −0.75, and thus curves with τ � −0.75
are not shown in figure 5.

Figure 6 shows that due to an increase of |τ | the neutral state energy of both geometries
decreases, but the decrease is much more rapid for an oblate spheroid than for a spherocylinder
due to the reason explained above. The most significant feature of figure 6 is that the neutral
state energy of the spherocylinder also has minima at some length of the cylinder similar to
the overcharging curves in figure 4.

It is obvious from figure 6 that the energy of the neutral state is a continuous function
of τ which shows the dependence of Coulombic interaction energy with shape and size of a
charged particle. In WC theory, the energy is inversely proportional to the square root of the
surface area of the macroion. The surface of an oblate spheroid or a spherocylinder is actually
a function of τ . This is why the macroion–counterion interaction energy is also a function of
τ . In non-neutral cases (such as maximally overcharged states) we also found curves similar
to figure 6.

5.2. Double macroion case

In this case, for all geometries, the sizes of both the macroions of a pair of any geometry are
the same. Also, like the single macroion case, the surface areas of the macroions are the same
for all geometries.



2924 A K Mukherjee

(a)

(b)

Figure 10. The total electrostatic potential energies of pairs of macroions with different geometries
as a function of the degree of ionization (similar to figure 8). (A) Z2 = 150, (B) Z2 = 90 and
(C) Z2 = 30. The centre–centre distances are: (a) r/R = 4.25, (b) r/R = 3.00 and (c) r/R = 2.40
as shown in figures (a)–(c) respectively. The dashed and solid lines are polynomial fits to guide the
eyes. Solid curves represent spherical macroions.
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(c)

Figure 10. (Continued.)

Figure 11. A comparison between the proposed theoretical model (solid curves) and the simulation.
The solid curves are from equation (39). The fit parameters are given in table 5.

Figure 8 is a comparison between simulation results and theoretical predictions for
spherical double macroions. The solid lines are from equation (39). Some of the fit parameters
of equation (39) is given in table 5 (τ = 0.0). The excellent agreement clearly indicates
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Table 2. A comparison between the ground state electrostatic energies calculated from present
technique (column 3) and WC theory (equation (8)) for three different values of α (column 4–6)
and from MD (column 7).

WC

Zm n Simulation α = 1.956 α = 1.920 α = 1.960 Reference [3, 43]

0 0 0 0 0 0
1 −18.060 −18.060 −17.683 −18.102 −17.988
2 −31.955 −31.611 −30.848 −31.695 −31.747
3 −40.843 −40.644 −39.489 −40.772 −40.423

50 4 −45.051 −45.152 −43.598 −45.324 −44.348
5 −45.192 −45.129 −43.169 −45.346 −44.159
6 −40.651 −40.569 −38.195 −40.832 −39.206

α = 1.935 α = 1.880 α = 1.960

0 0 0 0 0 0
1 −24.596 −24.596 −23.884 −25.005 −24.379
2 −44.747 −44.578 −43.148 −45.402 −44.220
3 −61.233 −54.945 −57.788 −61.187 −60.237

90 4 −71.814 −70.693 −67.801 −72.357 −70.302
5 −78.566 −76.814 −73.185 −78.910 −76.464
6 −80.346 −78.320 −73.937 −80.843 −77.567
7 −77.389 −75.193 −70.053 −78.152 −73.859
8 −69.998 −67.436 −61.532 −70.834 −65.639

α = 1.930 α = 1.880 α = 1.960

0 0 0 0 0 0
1 −36.132 −36.132 −34.692 −36.272 −35.270
2 −67.980 −67.569 −64.679 −67.850 −66.340
3 −93.616 −94.308 −89.962 −94.731 −92.110

180 4 −116.330 −116.349 −110.540 −116.914 −113.160
5 −133.502 −133.699 −126.409 −134.399 −129.480
6 −146.658 −146.333 −137.571 −147.185 −141.040
7 −154.154 −154.271 −144.024 −155.270 −147.580
8 −157.432 −157.511 −145.766 −158.653 −149.560
9 −156.793 −156.045 −142.798 −157.333 −146.380

10 −149.601 −149.875 −135.117 151.310 −138.710

that the proposed model (equation (39)) can explain the simulation better than WC theory
(equation (29)). The simulation results look very much like those of MD [3]. Unlike single
macroion overcharging (figure 4), the published results using the LJ potential in an MD
simulation [3] do not seem to be very different from those of this technique obtained using
a hard sphere potential. Nevertheless, it can be expected that the energy calculated from the
present technique should be a little lower than those yielded by an MD simulation, due to the
same reason stated in the case of a single macroion. Note that the only purpose of this part of
the study (figure 8) is to check the validity of the present technique, and thus the discussion of
this figure (already given in [3]) has been omitted here.

Figure 9 shows the neutral ground state energy variation with τ for a double macroion at
a fixed macroion separation where the charge of one macroion is fixed to Z1 = 180 while the
charge Z2 of the other one varies. As expected, the energy gain increases with the magnitude of
the charge Z2. The similarities in shapes of the curves between the two cases (single (figure 6)
and double macroion) are notable. All the properties, namely minima at a certain length of
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Table 3. Comparison between the WC parameter α obtained from table 2 of [3] and those from
calculations using the present technique (equation (9)).

Zm Nc α (this work) α [3]

4 2 1.894 1.890
6 3 1.884 1.970
8 4 1.894 1.920

10 5 2.005 2.020
20 10 1.911 1.930
30 15 1.954 1.910
32 16 1.956
50 25 1.956 1.920
90 45 1.935 1.880

128 64 1.956
150 75 1.990 1.910
180 90 1.930 1.88
288 144 1.867
360 180 1.835 1.860

Table 4. Proposed theoretical model (equation (24)) fit parameters (X) for the single macroion
case (figures 4 and 5).

τ X τ X

+5.00 0.210 0.00 0.242
+1.50 0.218 −0.50 0.223
+0.50 0.230 −0.60 0.224

Table 5. Proposed theoretical model (equation (39)) fit parameters (X) for the double macroion
case (figures 8 and 11). The centre–centre separation is 121.38 Å (r/R = 4.25).

τ Z2 = 150 Z2 = 90 Z2 = 30

+5.00 0.700 0.710
0.00 0.905 0.925 0.825

−0.25 0.700 0.800 0.780

the spherocylinder, continuous variation of energy with τ , etc, of the single macroion case are
also present in the case of a double macroion.

Figure 10 shows a comparison of the energy gain corresponding to the ‘degree of ioniza-
tion’ (DI) between macroions of three different geometries. The calculations have been done
in exactly the same way and with the same macroion charges and centre to centre separations
as the spherical cases (figure 8). The energy gains for non-spherical macroions at each DI
and centre to centre distance are very similar to those of the spherical cases except for higher
macroion charge separation (Z2 = 30). This indicates that the ionic correlation between the
condensed ions is almost independent of macroion geometry and size if the charge asymmetry
is not too high. Consequently, the long range Coulomb interaction between a pair of macroions
with low charge separation can be expected to be independent of their size and geometry.

Figure 11 shows a verification of the proposed theoretical model by simulation data using
some of the results of figure 10(A) (for clarity, other curves are not shown). The fit parameters
can be found in table 5. Again, the excellent agreement clearly shows that the model is suitable
for all geometries.

Table 2 summarizes the numerical results for direct comparison with the corresponding
numerical values from the work of Messina et al [3, 43]. Columns 3, 4 and 7 have already been
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shown graphically in figure 4, where the dots are column 3, dashed lines are column 4 and the
open circles are column 7. Using the first overcharge	E1 (simulation) from column 3, the WC
parameterα has been calculated from equation (9). Applying thoseα in equation (8), column 4
has been calculated. The close proximity between the values in the two columns 3 and 4 clearly
reveals excellent agreement between this technique and the WC theory. Columns 5 and 6 have
been calculated using α given in [3] and WC planar α (=1.96) respectively from equation (8).
Since in all three cases (Zm = 50, 90, 180) the α of the present results are very close to planar
α, the results are also very similar (see columns 3 and 6). Column 7 is the MD simulation
result published in [3]. All the results in table 2 are in good numerical agreement overall,
justifying the validity and accuracy of the present technique.

In table 3, values of α have been calculated for various cases and compared with those
given in [3]. Again, good agreement between the two sets of α calculated using the two
different techniques is obvious.

6. Concluding remarks

In this paper, the phenomenon of overcharging of macroions with different geometries and sizes
has been studied using a simple technique based on electrostatic Coulombic interaction energy
minimization. The performance of the technique has been verified in a published MD study [3]
for spherical macroion cases. It is found that the technique is straightforward to use, economic
in terms of computer time usage, and equally efficient to study the overcharging phenomenon
for both single and double macroion cases including different macroion geometries and sizes.

Note that the technique is comprised of three different steps, and the second step has some
similarities with traditional MC simulation, namely random movement of ions. Usually, in
almost all types of MC methods (Markov chain MC or sequential MC), the random sampling
is governed by a defined probability (e.g. Boltzmann distribution for Markov chain MC)
distribution function. In this technique the probability of acceptance of a move is either 1
or 0. Traditional MC simulation, for example standard Metropolis MC, generates a number
of equally likely configurations (after equilibration) and then takes an average over all those
configurations to produce the final result. However, in this technique there is no need to
equilibrate the system; all accepted configurations are considered. Any accepted configuration
must have lower energy than previous one. But in Metropolis MC, higher energy configurations
can also be accepted on a random basis (uphill). This is why the final configuration produced
by this technique has the lowest potential energy.

The most significant feature of this technique is the introduction of the concept of a
randomly varying displacement parameter (DP), which helps the system reach very close to its
true ground state, while in Metropolis MC simulation the DP is fixed to a value that generally
yields 50% acceptance of the random move. This is why the traditional Metropolis MC is
not useful for studying the overcharging phenomenon where the breaking of recurrent special
counterion arrangements resulting in metastable local minima is required.

On the other hand, the basic difference of the present technique from simulated annealing
proposed by Kirkpatric et al [45] (which is a Metropolis MC algorithm) is that there is no need
to consider adiabatic cooling to reach the frozen state for this technique, as it always deals with
absolute zero from the very beginning. As in an MD simulation, the system does not need to
be heated up periodically to overcome potential energy barriers, since in the present technique
those energy barriers are being surmounted by automatic adjustment (sudden increase at local
minima) of the DP. Although both an increase of the system temperature and enhancement
of the DP have similar effects on ionic movements, the degrees of freedom are fewer in the
latter case as the ions are confined to move only over the macroion surface, resulting in less
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computer time being needed than in the previous case. Moreover, there is no cell surrounding
the macroion in the present technique since the counterions are restricted to move over the
surface of the macroion.

The other possible way to overcome the energy barriers is embedded in the intrinsic nature
of the technique itself. To move an ion, this technique does not consider any energy barrier or
energy pitfall in between any two consecutive positions of the ion. A randomly selected ion
at any initial position can simply vanish and can evolve in another position if and only if this
movement can cause a decrease in the total system energy. In this case the DP may not be
increased to cross a barrier which has also been observed in some situations. From these two
possible ways of surmounting energy barriers it can be assumed that if the width of the barrier
is bigger than the current DP, only then will the DP adjust itself to allow a bigger movement
of the ion so that it can evolve to a lower energy state (if there is any) across the barrier.

All data points are seen to be well fitted with the equations (10) and (29) (for spherical
geometry) based on a simple version of WC theory [3] and also with equations (24) and (39)
(for all geometries) derived by modifying the Scatchard approach.

In the case of a double macroion, this technique clearly indicates that at absolute zero stable
ionized states can exist as they are energetically favourable, and those states are influenced by
macroion geometry at higher charge asymmetry. In future studies, a traditional MC simulation,
such as Metropolis MC, will be used to check whether these ionized states exist at room
temperature and in solution with salt.
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Appendix

The radius of the cylinder and the end caps of the spherocylinder are equal. With the change
of the length of the cylinder, this radius has to change to keep the surface area the same as that
of a sphere of radius R. This has been done in the following way.

4πr 2
m + 2πrm L = 4πR2 (A.1)

where rm is the new adjusted radius and L is the length of the cylinder. With L = rmτ ,
equation (A.1) reduces to

rm = R[
1
2τ + 1

]1/2 , τ � 0. (A.2)

Similarly, in the case of an oblate spheroid,

rm = R[
1
2τ + 1

]1/2 , τ ≺ 0. (A.3)
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